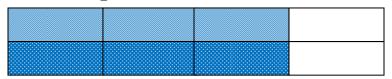

Manipulative Mathematics Model Fraction Multiplication

Name


When you multiply fractions, do you need a common denominator? Do you take the reciprocal of one of the fractions? What are you supposed to do and how are you going to remember it? A model may help you understand multiplication of fractions.

- 1) Model the product $\frac{1}{2} \cdot \frac{3}{4}$.
 - (a) To multiply $\frac{1}{2}$ and $\frac{3}{4}$, let's think " $\frac{1}{2}$ of $\frac{3}{4}$ ".
 - (b) First, we draw a rectangle to represent one whole. We divide it vertically into 4 equal parts, and then shade in three of the parts to model $\frac{3}{4}$.

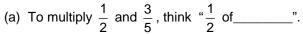
We have shaded in $\frac{3}{4}$ of the rectangle.

(c) Now, we divide the rectangle horizontally into two equal parts to divide the whole into halves. Then we double-shade $\frac{1}{2}$ of what was already shaded.

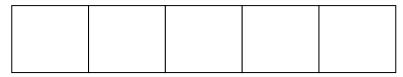
- (d) Into how many equal pieces is the rectangle divided now?
- (e) How many of these pieces are double-shaded? _____

We double-shaded 3 out of the 8 equal pieces, $\frac{3}{8}$ of the rectangle. So $\frac{1}{2}$ of $\frac{3}{4}$ is $\frac{3}{8}$.

We showed that


$$\frac{1}{2} \cdot \frac{3}{4} = \frac{3}{8}$$

Notice -


multiplying the numerators
$$1 \cdot 3 = 3$$

multiplying the denominators
$$2 \cdot 4 = 8$$

2) Model the product $\frac{1}{2} \cdot \frac{3}{5}$.

(b) First shade in $\frac{3}{5}$ of the rectangle.

(c) Now double-shade $\frac{1}{2}$ of what was already shaded.

(d) Into how many equal pieces is the rectangle divided now? _____

(e) How many pieces are double-shaded? _____

(f) What fraction of the rectangle is double-shaded? _____

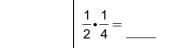
(g) So $\frac{1}{2}$ of $\frac{3}{5}$ is _____.

You have shown that

$$\frac{1}{2} \cdot \frac{3}{5} = \frac{3}{10}$$

Notice -

multiplying the numerators
$$1 \cdot 3 = 3$$


multiplying the denominators $2 \cdot 5 = 10$

3) Use a rectangle to model each product. Sketch a diagram to illustrate your model.

(a) $\frac{1}{2} \cdot \frac{1}{3}$

(b) $\frac{1}{2} \cdot \frac{1}{4}$

(c) $\frac{1}{3} \cdot \frac{1}{4}$

(d) $\frac{1}{3} \cdot \frac{2}{3}$

(e) $\frac{2}{3} \cdot \frac{4}{5}$

2	4	
3	5	=

- 4) Look at each of your models and answers in Question 3.
 - (a) If you multiply numerators and multiply denominators, do you get the same result as you did from the model? _____
 - (b) Explain in words how to multiply two fractions.
- 5) The definition of fraction multiplication is given in the box below.

Fraction Multiplication

If a,b,c, and d are numbers where $b \neq 0$ and $d \neq 0$, then $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

To multiply fractions, multiply the numerators and multiply the denominators.

Use the definition of fraction multiplication to multiply $\frac{5}{12} \cdot \frac{7}{3}$

- (a) Identify a, b, c, and d.
- (b) Multiply the fractions.